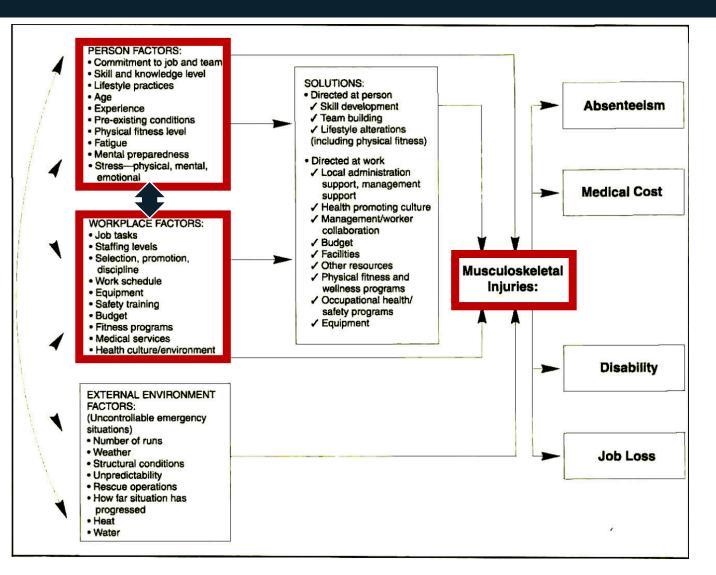
EXPLORING THE IMPACT OF CRITICAL INCIDENT EXPOSURE ON PSYCHOLOGICAL FATIGUE AS A RISK FACTOR FOR MUSCULOSKELETAL INJURY DURING FIREFIGHTING TASKS

Sara T. Sayed, MSc (c)¹, Regan Bolduc OT Reg.(Ont.)², Kathryn E. Sinden, RKin, PhD¹ ¹School of Kinesiology, Lakehead University, Thunder Bay, ON ²Thunder Bay Professional Firefighters Association, Thunder Bay, ON

Introduction

- Firefighting is a physically and psychologically demanding job^(1,2)
 - Nature of the tasks (e.g., awkward postures, heavy loads)
 - Extreme conditions & challenging work environments
 - Danger to personal safety
 - Exposure to critical incidents (i.e., traumatic events, gruesome injuries)



Introduction – MSK Injury risk

(Conrad, Balch, Reichelt, Muran, Oh, 1994)

Research Problem

- Previous literature:
 - Limited insights on psychological impacts on fatigue
 - Highly controlled environment (i.e., Lab-based)
 - Controlled tasks (i.e., treadmill protocols)
- Unique components of this study:
 - Explores psychological factors for MSK injury
 - Multiple time points
 - Effects of load over time
 - Applied research

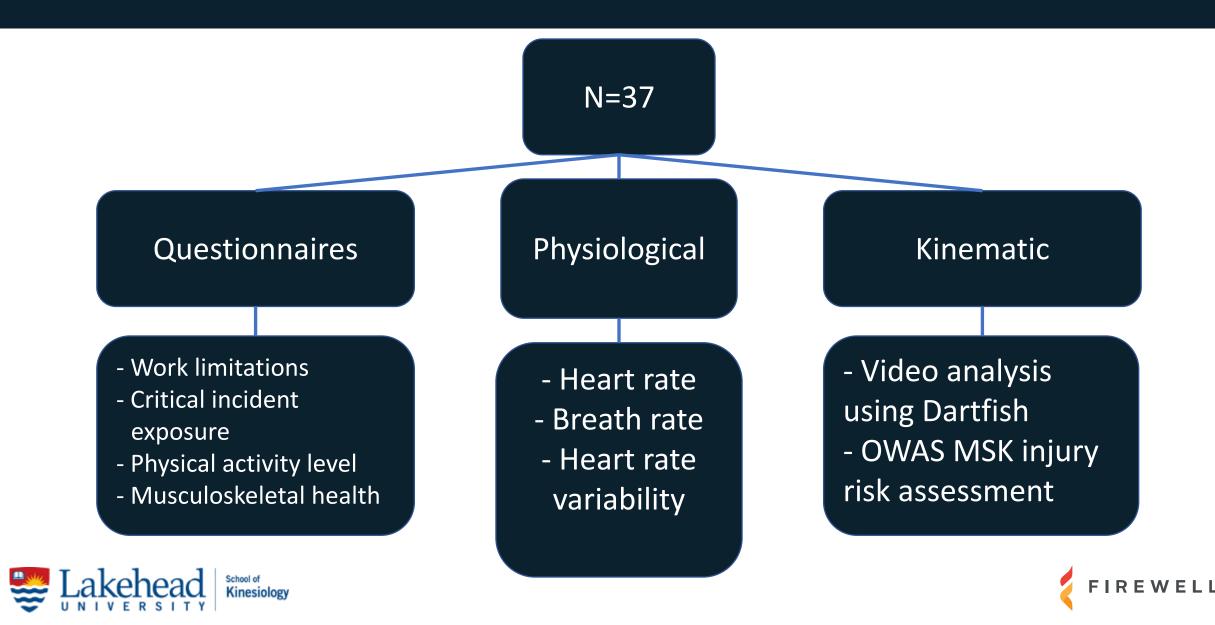
The purpose of this research is to quantify critical incident exposure and fatigue, as determined by HRV, among Thunder Bay career firefighters

Methods: Context

<u>CONTEXT</u>: Thunder Bay Fire Rescue and the Thunder Bay Professional Firefighters Association

STUDY DESIGN:

- Cohort with Repeated Measures
 - Baseline November 2017
 - Six months May 2018
 - One year November 2018
- Sample = 37 active-duty, career firefighters



Methods

Methods: Protocol

- Demographic information was collected prior to task performance
 - Age, height, weight, years of service
- The Critical Incident Inventory was administered to quantify critical incident exposure
- Zephyr BioHarness used to collect HRV data⁽⁴⁾
- Full bunker gear including the self-contained breathing apparatus (SCBA)
- Performed two tasks (Hose Drag & Patient Transfer)

Methods: Protocol

• The hose drag task was performed using a charged line (905kpa)

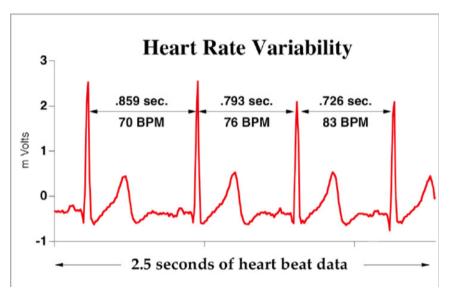
Methods: Protocol

- Paired lift to transfer a weighted manikin (68kg) from the ground into a stair chair
- Each participant performed two lifts
 - Lift at the head (heavy)
 - Lift at the feet (light)

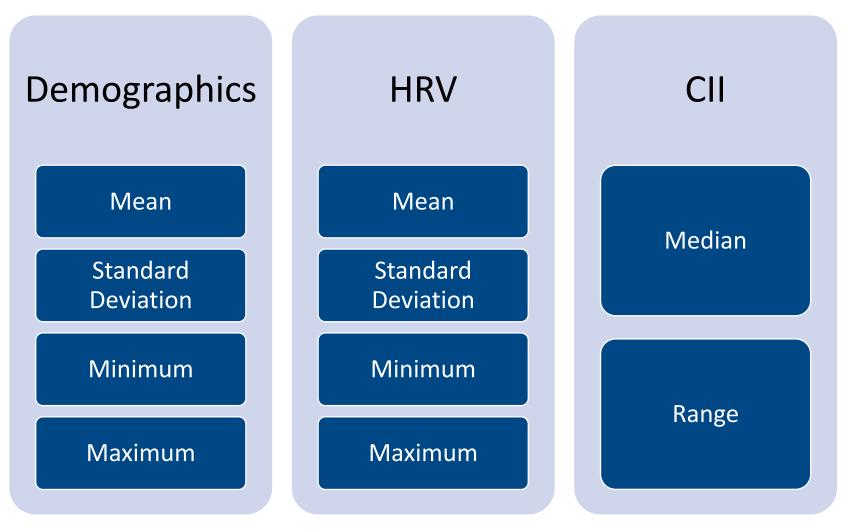
Methods: Measures

Critical Incident Inventory Questionnaire

- Measure of traumatic experiences encountered by firefighters through daily work
- > 24 items (critical incidents)
- Frequency of exposure to each event (2 month period)
- Convergent validity ⁽⁵⁾
 - Anger and depressive symptomology



Methods: Measures


Fatigue

- Heart rate variability (Zephyr BioHarness)
 - Single lead ECG captures R waveforms (250Hz)
- Time-domain analysis
 - Standard deviation of normal-normal beats (SDNN)

Methods: Data Analysis

Results: Demographic Characteristics

	Mean (SD)	Min.	Max.
Age (yrs)	38.7 (8.9)	27	58
Height (cm)	183.95 (8.23)	167.64	198.12
Weight (kg)	99.6 (23.7)	78.5	187.96
Years of Service	11.6 (7.2)	3	26

Table 1: Demographics (n=37)

Results - CII

- Critical incident exposure and range are high at each timepoint
- Higher exposures at baseline and one-year (winter months)
- Most commonly experienced events
 - Direct exposure to blood and body fluids
 - Incidents involving one or two deaths

	Baseline	Six-months	One-year
Median	7	5	6
Range	40	19	32

Table 2. Median and range of critical incident exposure at each timepoint (# of events).

Results – HRV

- Heart rate variability is low across all timepoints
- Remains relatively unchanged over a one year period

	Baseline	Six-months	One-year
Mean	62.1 (11.7)	65.5 (1.3)	61.9 (1.4)
Minimum	49.6	63.9	75.8
Maximum	73.0	66.9	78.8

Table 3. Average heart rate variability from initiation of firefighting tasks (hose drag) to completion (patient transfer) at each timepoint $[\bar{X}$ (SD)].

16

Discussion

Physical	,	chological factors on MSK heal nong firefighters	th are poorly
 Physiological 	 High CIE may have impacts on reduced task tolerance (low 		
	 Poor health outcomes associated with low HRV⁽⁷⁾ 		
	Known link bet	ween fatigue and MSK injury in	n firefighting
Psychological			
Low HRV	Fatigue	Increased MSK injury risk	
Lakehead School of Kinesiology			FIR

- ced task tolerance (low HRV) ⁽⁶⁾
- ith low HRV⁽⁷⁾
- 5K injury in firefighting ⁽³⁾

Conclusion

Key Findings - Findings suggest a reduced tolerance to firefighting tasks (HRV) - Low HRV may be indicative of fatigue during task performance	- Low HRV may be indicative of fatigue during task performance
--	--

	 Upscaling with a larger sample Use of frequency-domain measures over longer durations to identify
Future Directions	

References

1. Michaelides MA, Parpa KM, Henry LJ, Thompson GB, Brown BS. Assessment of physical fitness aspects and their relationship to firefighters' job abilities. J Strength Cond Res. 2011;25(4):956–65.

2. Guidotti TL. Human factors in firefighting: ergonomic-, cardiopulmonary-, and psychogenic stress-related issues. Int Arch Occup Environ Health. 1992;64(1):1–12.

3. Conrad KM, Balch GI, Reichelt PA, Muran S, Oh K. Musculoskeletal injuries in the fire service: views from a focus group study. AAOHN J [Internet]. 1994;42(12):572–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7893285

4. Nazari G, MacDermid JC, Sinden R. Kin. KE, Richardson J, Tang A. Reliability of Zephyr Bioharness and Fitbit Charge Measures of Heart Rate and Activity at Rest, During the Modified Canadian Aerobic Fitness Test and Recovery [Internet]. Journal of Strength and Conditioning Research. 2017. 1 p. Available from: http://insights.ovid.com/crossref?an=00124278-900000000-96115

5. Monnier J, Cameron RP, Hobfoll SE, Gribble JR. The impact of resource loss and critical incidents on psychological functioning in fire-emergency workers: A pilot study. Int J Stress Manag. 2002;9(1):11–29.

6. Aaronson LS, Teel CS, Cassmeyer V, Neuberger GB, Pallikkathayil L, Pierce J, et al. Defining and Measuring Fatigue. Image J Nurs Scholarsh [Internet]. 1999;31(1):45–50. Available from: http://doi.wiley.com/10.1111/j.1547-5069.1999.tb00420.x

7. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol [Internet]. 2014;5(September):1–19. Available from:

http://journal.frontiersin.org/article/10.3389/fpsyg.2014.01040/abstract

This work was supported by Lakehead University's Senate Research Council through a Research Development Grant.

We would also like to thank the Thunder Bay Fire Rescue and the Thunder Bay Professional Firefighters Association for all of their support, time, and dedication to this work.

