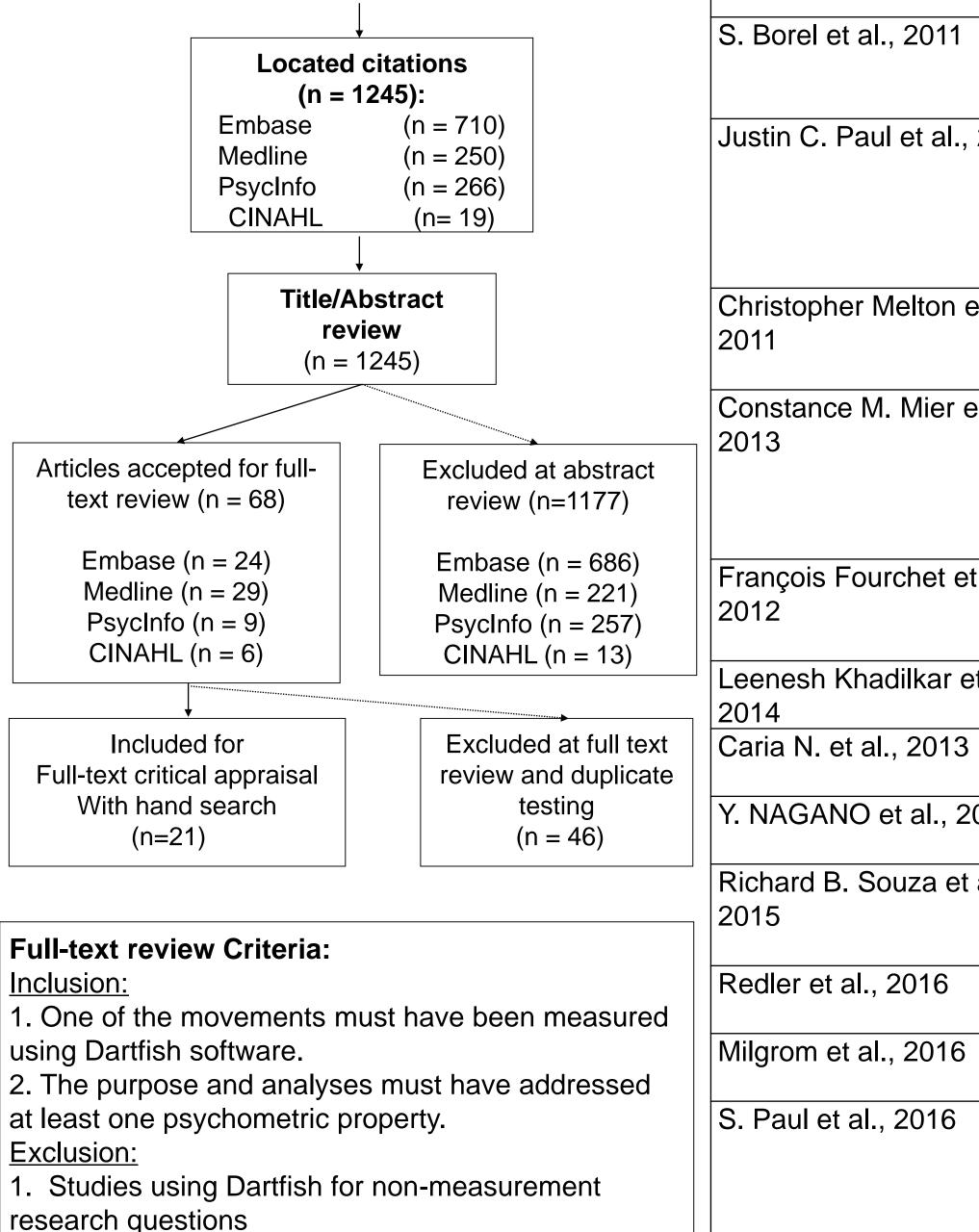


A systematic review of the analytical approaches and methodological quality of studies evaluating the measurement properties of Dartfish (video-based) two-dimensional movement analysis. Ze Lu, MSc,¹ Joy C. MacDermid, PT, PhD^{1,2}

KEY FINDINGS

Background


- The barriers to using 3D motion analysis in real world contexts lead some to develop video-based solutions to measuring movement¹.
- It is important to evaluate the psychometric properties of 2D motion analysis enabling researchers to measure movement in different populations without the limitations of a strict laboratory setting^{2,3}

Objective

• The purpose of this systematic review was to describe the contexts in which Dartfish psychometrics has been evaluated, critically appraise the methodological quality of the studies, and synthesize the psychometric properties reported.

Methods

Search Strategy Key words: (2 –d motion analysis OR Dartfish OR video motion analysis) AND (reliability OR validity OR psychometric OR responsiveness OR MDC) Dates: January 1999 to Dec 2018 Other: Google searches and hand searches of retrieved study references lists

2. Range of movement has not been analyzed with Dartfish.

Author Affiliations

1) School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada 2) School of Physical Therapy, Western University, London, ON, Canada

Results

Author, Publication Yea

Stensrud et al., 2011

Bart Dingenen et al., 201

Junya et al., 2015

Andrew Miller et al., 2008

Beth S Norris et al., 2011

Jennifer N et al., 2015

Constance M. Mier et al.. 2011 Kathryn E Sinden et al., 2016

Islam Mahmoud et al., 20

Justin C. Paul et al., 2015

Christopher Melton et al.

Constance M. Mier et al.,

François Fourchet et al.,

Leenesh Khadilkar et al..

Y. NAGANO et al., 2008

Richard B. Souza et al.

SLS: Single leg squat; SL SLR: Straight-Leg Raise Tes

Dartfish can provide reliable and valid movement kinematic indicators describing simple uniplanar movements; complex movements pose more challenges. Particular effort should be taken on quantifying the dynamic or multi-planar movement using Dartfish.

r	Population	Sample	Mean Age Years \pm SD		Camera	Measurement Property Assessed	Quality
	Movement studied	Size	(range)	variable	Position (2D)		score
	Healthy female SLS,SLVDJ,VDJ	184	22±4	Angle	Frontal	Test-retest reliability ICC 0.57-0.89	63
3	Healthy female	15	21.1±3.4	Angle	Frontal	Intra-rater reliability ICC 0.98-0.99	77
	Spinal deformity patients Walking	40	60.1	Angle	Sagittal	Concurrent validity DARTFISH vs SVA r=-0.642 DARTFISH vs X-ray r=0.742	32
	Healthy Step-up, SLVDJ, Single-leg spring	24	23.7 (21.2–26.3)	Angle	Sagittal	Test-retest reliability ICC 0.64-0.75	71
	Healthy female Mechanical lift task	15	21~39	Angle	Sagittal	Intra-rater ICC 0.98-0.99 Inter-rater ICC 0.91-0.98 Test-retest ICC 0.79 & 0.91	92
	Healthy Runners Treadmill running	24	19.9±1.3	Angle	Frontal	Intra-rater reliability ICC 0.95-0.98	86
	Healthy SR, PSLR	60	25.0±9.3 M 23.7±7.9 F	Angle	NA	Intra-rater ICC 0.99 Test-retest ICC 0.79-0.99	88
	Firefighters Firefighting high-rise lifting task	12	40.5±8.3	Angle, Distance	Frontal Sagittal	Intra-rater ICC 0.72-0.97	88
15	Healthy children Vertical jump	38	(3 – 12)	Distance	Sagittal	Internal consistency Cronbach's alpha=0.953 Concurrent validity R2=0.85	41
	Children with spastic cerebral palsy Gait	12	8.9	Angle, Distance Time	Frontal Sagittal	Cohen kappa(95%CI) 0.81 (0.509–1.109)	50
	Healthy Walking Lower extremity: Rotation, forward, left and right side bend	10	24.5±2.4 (23~30)	Angle Distance	Sagittal	Inter-rater reliability ICC 0.7197 MDC Angle: 2° ~12.6° Distance: 2.5~4.8 cm	55
	Healthy + Shoulder injured AE, AAE	21	27 ± 6 H 29 ± 9 S	Angle Velocity	Sagittal	Inter-rater reliability Angle ICC 0.70-0.99 Velocity ICC 0.52	68
	Healthy SR	30	25.6 ± 7.6 M 22.4 ± 2.2 F	Angle	Sagittal	Intra-rater ICC 0.87-0.97 Inter-rater ICC 0.82-0.97 Test-retest ICC 0.84-0.97 Internal consistency ICC 0.95-0.99	79
	Male athlete Flexibility of eight lower limb muscle groups	10	15.3 ± 1.6	Angle	Sagittal Overlook	Reliability ICC 0.51-0.93	75
	Healthy ADL	10	29 ± 5	Angle	Coronal Sagittal	Inter-rater ICC 0.68-1.00 Test-retest ICC 0.45-0.94	75
	Healthy VDJ	16	25.5 ± 2.0	Angle Distance	Frontal	ICC-intra=0.95& 0.96 ICC-inter=0.82& 0.86	63
	Healthy female Treadmill running	28	21 ± 1	Angle	Frontal	Concurrent Validity R2 0.34-0.41	79
	Healthy Propelling wheelchair	256	42.3 ± 10.9(17-80) M 41.9 ±9.7(20-65) F	Angle	Back	Intra-rater ICC 0.81-0.95 Inter-rater ICC 0.88-0.93	79
	Athlete participant Professional observers	267	14.5 (11~17)	Distance	Frontal	Inter-rater $\kappa = 0.92$ Intra-rater $\kappa = 0.55$	82
	Spinal cord injury and ambidextrous	5	N/A	Angle Distance	Frontal	Concurrent validity ICC 0.47-0.95	71
	Healthy	45	Healthy	Angle	Front	Criterion validity	80
	People with Parkinson disease STS,Single leg stance; Acutely induced dizziness		26.5 (4.3) 67.3 (7.1) PD 71.0 (7.1)	Distance Time	Sagittal	ICC 0.59-0.99 Cohen's kappa: 0.95 & 1.00 Test-retest 0.98-1.00 Inter-rater 0.61-1.00	

Conclusion

Discussion

Reference

- 8. doi:10.1016/j.knee.2006.10.006
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049033/.
- 7556.1000145

 About 14% of studies had substantial methodologic flaws (quality <50%). Studies varied on movements studied (with less focus on the upper limb), indicators extracted (angles most used) and reference standard.

Dartfish can provide reliable and valid kinematic data for lower extremity uniplanar motion; complex movement have more measurement error.

• Dartfish has potential to enhance mobility assessments that physical

therapists perform in a variety of clinical and real-world contexts.

• An important concern in 2D analysis is perspective error, strategies to

mitigate this error require more attention.

• Upper extremity protocols are insufficiently defined.

1. Piriyaprasarth P, Morris ME. Psychometric properties of measurement tools for quantifying knee joint position and movement: A systematic review. Knee. 2007;14(1):2-

2. Khadilkar L, MacDermid JC, Sinden KE, Jenkyn TR, Birmingham TB, Athwal GS. An analysis of functional shoulder movements during task performance using Dartfish movement analysis software. Int J Shoulder Surg. 2014;8(1):1-9.

3. Sinden KE, MacDermid JC. Evaluating the Reliability of a Marker-Less, Digital Video Analysis Approach to Characterize Fire-fighter Trunk and Knee Postures During a Lift Task: A Proof-of-Concept Study. J Ergon. 2016;06(01):1-10. doi:10.4172/2165-

